Conduction Characteristics of MOS Transistors (for fixed Vds)

Lecture 2 - 1

PYKC Oct-18-10

E4.20 Digital IC Design

MOS Transistor

- Shown here is the cross-section of an n-channel enhancement transistor:
- Substrate is moderately doped with p-type material. Substrate in digital circuit is usually connected to V_{Gnd} (ground).
- The source and drain regions are heavily doped with n-type material through diffusion. These are often referred to as the **diffusion** regions.

- MOS transistors are majority-carrier devices.
- For n-channel transistors, the majority carriers are electrons conducted through a channel.
- A positive gate voltage (w.r.t. substrate) enhances the number of carriers in the channel, and increases conduction.
- Threshold voltage V_{tn} denotes the gate-to-source voltage above which conduction occurs.
- For enhancement mode devices, V_{tn} is positive; for depletion mode devices, V_{tn} is negative.
- p-channel devices are similar to n-channel devices, except that all voltages and currents are

PYKC Oct-18-10

E4.20 Digital IC Design

Lecture 2 - 2

Cross-Section of CMOS Technology

MOS transistors - Types and Symbols

Threshold Voltage: Concept

MOS transistor (1)

- Between the diffusion regions is the gate area form from a layer of polycrystaline silicon (known as polysilicon). This is separated from the substrate by a layer of thin oxide (made of silicon dioxide). Polysilicon is reasonable conductor and form the gate electrode.
- Underneath the thin oxide and between the n+ regions is the channel. The channel is conducting when a suitable electric field is applied to the gate.
- Due to geometric symmetry, there are no distinctions between the source and drain regions. However, we usually refer the terminal with more positive voltage the drain (for n-type) and less positive voltage the source.
- For a zero gate bias and a positive V_{DS}, no current flows between the drain and source because of the two reverse biased diodes shown in the diagram. The drain and source are therefore isolated from each other.
- Assuming that the substrate is always at the most negative supply voltage, these two diode should never become forward bias under normal operation.

MOS transistor (2)

- When a positive voltage is applied to the gate, an electric field is produced across the substrate which attracts electrons toward the gate. Eventually, the area under the gate changes from p-type to n-type, providing a conduction path between the source and drain.
- The gate-source voltage V_{GS} when a channel starts to form under that gate is called the threshold voltage V_T.
- The surface underneath the gate under this condition is said to be **inverted**. The surface is known as the **inversion layer**.
- As larger bias is applied to the gate the inversion layer becomes thicker
- An other p-n junction exists between the inversion layer and the substrate. This diode junction is field induced. Contrast this with the p-n junction between the source (or drain) and the substrate, which is created by a metallurgical process.

The Threshold Voltage

Current-Voltage Relations

MOS transistor and its bias conditions

Current-Voltage Relations

Linear Region: V_{DS} ${\leq} \mathbf{V}_{GS}$ - \mathbf{V}_{T}

$$I_D = k_n \frac{W}{L} \Big((V_{GS} - V_T) V_{DS} - \frac{V_{DS}^{-2}}{2} \Big)$$

with

$$k'_n = \mu_n C_{OX} = \frac{\mu_n \varepsilon_{OX}}{t_{OX}}$$
 Process Transconductance
Parameter

Saturation Mode:
$$V_{DS} \ge V_{GS}$$
 - V_T

Channel Length Modulation

$$I_D = \frac{k'_n W}{2 L} (V_{GS} - V_T)^2 (1 + \lambda V_{DS})$$

Transistor in Saturation

MOS transistor (3)

I-V Relation

- As a voltage is applied between the source and drain, the inversion layer becomes thinner at the drain terminal due to interaction between V_G and V_D.
- If V_{DS} < V_{GS} V_T, then the drain current Id is a function of both V_{GS} and V_{DS}. Furthermore, for a given V_{DS}, I_D increases linearly with (V_{GS} V_T). The transistor is said to be operating in its linear or resistive region.
- ◆ If V_{DS} > V_{GS} V_T, then V_{GS} < V_T and **NO** inversion layer can exist at the drain terminal. The channel is said to be '*pinched-off*'. The transistor is operating in the saturation region, where the drain current is dependent on V_{GS} and is almost independent of V_{DS}.

NM OS Enhancement Transistor: W = 100 μ m, L = 20 μ m

PYKC Oct-18-10	E4.20 Digital IC Design	Lecture 2 - 13	PYKC Oct-18-10	E4.20 Digital IC Design	Lecture 2 - 14

A model for manual analysis

$$\begin{split} V_{DS} &> V_{GS} - V_T \\ I_D &= \frac{k'_n W}{2} (V_{GS} - V_T)^2 (1 + \lambda V_{DS}) \\ V_{DS} &< V_{GS} - V_T \\ I_D &= k'_n \frac{W}{L} \Big((V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \Big) \end{split}$$

with

$$V_T = V_{T0} + \gamma (\sqrt{-2\phi_F + V_{SB}} - \sqrt{-2\phi_F})$$

G

PYKC Oct-18-10

The Gate Capacitance

Average Gate Capacitance

Different distributions of gate capacitance for varying operating conditions

Operation Region	Cgb	Cgs	C_{gd}	
Cutoff	C _{ox} WL _{eff}	0	0	
Triode	0	$C_{ox}WL_{eff}/2$	$C_{ox}WL_{eff}/2$	
Saturation	0	$(2/3)C_{ox}WL_{eff}$	0	

Most important regions in digital design: saturation and cut-off

PYKC Oct-18-10

E4.20 Digital IC Design

Lecture 2 - 18

Issues concerning Sub-Micron MOS Transistors

Long-channel threshold

Threshold as a function of the length (for low V_{DS})

Parasitic Resistances

Velocity Saturation (1)

Linear Dependence on V_{GS}

Characteristics of an n-channel transistor

What is SPICE Circuit Simulator?

- **SPICE** is a widely-used circuit-level simulator, originally from Berkeley.
- We use an industrial version HSPICE in the Department
 You can download WinSPICE which is free (see course web page)
- SPICE uses numerical techniques to solve nodal analysis of circuit. It supports the following:
 - Textual input to specify circuit & simulation commands
 - Text or graphical output format for simulation results
- You can use SPICE to specify these circuit components:
 - Resistors, Capacitors, Inductors
 - Independent sources (V, I), Dependent sources (V, I)
 - Transmission lines
 - Active devices (diodes, BJTs, JFETS, MOSFETS)
- You can use SPICE to perform the following types circuit analysis:
 - non-linear d.c.
 - non-linear transient
 - linear a.c.
 - Noise & temperature

SPICE MODELS

SPICE Parameters

Level 1: Lo Level 2: Ph Saturati Level 3: Se to meas	evel 1: Long Channel Equations - Very Simple evel 2: Physical Model - Includes Velocity Saturation and Threshold Variations evel 3: Semi-Emperical - Based on curve fitting to measured devices		.MODEL CMO DELTA=0.7 + LD=5E-08 NFS=6E+11 + VMAX=2E+ CGBO=4.0E- + CJ=5.6E- .MODEL CMO 0.92 DELTA + LD=3.5E- NSUB=8.5E+ + VMAX=2.55 CGBO=3.8E-	SN NMOS LEVEL=3 PHI=0.7 TOX=10E-09 XJ=0. KP=2E-04 UO=550 THETA=0.27 RSH=2 GAMMA= 05 ETA=3.7E-02 KAPPA=2.9E-02 CGDO=3.0E-1 10 04 MJ=0.56 CJSW=5E-11 MJSW=0.52 PB=1 SP PMOS LEVEL=3 PHI=0.7 TOX=10E-09 XJ=0. =0.29 08 KP=4.9E-05 UO=135 THETA=0.18 RSH=2 GA 16 NFS=6.5E+11 E+05 ETA=2.45E-02 KAPPA=7.96 CGDO=2.4E-1 10	2U TPG=1 VTO=0.65 0.6 NSUB=1.4E+17 0 CGSO=3.0E-10 2U TPG=-1 VTO=- MMA=0.47 0 CGSO=2.4E-10
Level 4 (BS	6IM): Emperical - Simple and F	Popular	+ CJ=9.3E-04 MJ=0.47 CJSW=2.9E-10 MJSW=0.505 PB=1 • KP (in μAV^{-2}) = k' _n (k' _p) • VT0 and TOX = V _{tn} (V _{tp}) and T _{ox} • U0 (in cm ² V ⁻¹ s ⁻¹) = μ_n (and μ_p)		
ct-18-10	E4.20 Digital IC Design	Lecture 2 - 25	PYKC Oct-18-10	E4.20 Digital IC Design	Lecture 2 - 26

PYKC Oct-18-10

MAIN MOS SPICE PARAMETERS

Symbol	SPICE keyword
V _{T0}	VTO
K'	KP
γ	GAMMA
$\varphi=2\varphi_{\rm F}$	РНІ
λ	LAMBDA
tox	TOX
μ	UO
N _i	NSUB
L _D	LD
${\rm A}_{\rm F}$, ${\rm K}_{\rm F}$	AF, KF
${\rm I}_{\rm S}$, ${\rm J}_{\rm S}$	IS, JS
various capacitances	CJ, CJSW, CGBO, CGDO, CGSO
various resistances	RD, RS, RSH

SPICE Transistors Parameters

Parameter Name	Symbol	SPICE Name	Units	Default Value
Drawn Length	L	L	m	-
Effective Width	W	W	m	-
Source Area	AREA	AS	m2	0
Drain Area	AREA	AD	m2	0
Source Perimeter	PERIM	PS	m	0
Drain Perimeter	PERIM	PD	m	0
Squares of Source Diffusion		NRS	-	1
Squares of Drain Diffusion		NRD	-	1

Fitting level-1 model for manual analysis

SPICE Parameters for Parasitics

Parameter Name	Symbol	SPICE Name	Units	Default Value
Source resistance	R _S	RS	Ω	0
Drain resistance	R _D	RD	Ω	0
Sheet resistance (Source/Drain)	R _o	RSH	വം.	0
Zero Bias Bulk Junction Cap	$C_{j\theta}$	CJ	F/m ²	0
Bulk Junction Grading Coeff.	m	MJ	-	0.5
Zero Bias Side Wall Junction Cap	C _{jsw0}	CJSW	F/m	0
Side Wall Grading Coeff.	m _{sw}	MJSW	-	0.3
Gate-Bulk Overlap Capacitance	CgbO	CGBO	F/m	0
Gate-Source Overlap Capacitance	C _{gsO}	CGSO	F/m	0
Gate-Drain Overlap Capacitance	CgdO	CGDO	F/m	0
Bulk Junction Leakage Current	IS	IS	A	0
Bulk Junction Leakage Current Density	J_S	JS	A/m ²	1E-8
Bulk Junction Potential	ф о	PB	v	0.8

Select k' and λ such that best matching is obtained @ V_{qs} = V_{ds} = V_{DD}

PYKC Oct-18-10

E4.20 Digital IC Design

Lecture 2 - 29

PYKC Oct-18-10

E4.20 Digital IC Design

Lecture 2 - 30

Technology Evolution

Year of Introduction	1994	199 7	2000	2001	2003	2004
Channel length (µm)	0.4	0.3	0.25	0.18	0.13	0.1
Gate oxide (nm)	12	7	6	4.5	4	4
V_{DD} (V)	3.3	2.2	2.2	1.5	1.5	1.5
$V_T(\mathbf{V})$	0.7	0.7	0.7	0.6	0.6	0.6
NMOS I_{Dsat} (mA/µm) (@ $V_{GS} = V_{DD}$)	0.35	0.27	0.31	0.21	0.29	0.33
PMOS I_{Dsat} (mA/µm) (@ $V_{GS} = V_{DD}$)	0.16	0.11	0.14	0.09	0.13	0.16